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Abstract

Analytic combinatorics (AC) is a classical mathematical field that in the last few years has found new
applications in information fusion and multiple target tracking. Many problems in these applied fields
are severely handicapped by the fact that exact solution algorithms are NP-hard. What AC contributes
to these fields is two-fold. Firstly, AC formulates problems in terms of a generating function or
generating functional. This formulation is exact and complete, taking the form of a single concise
equation. Exact filters are derived from these functions by differentiation. Because the derivatives are
exact, they too suffer from being NP-hard to compute. This is where the second contribution of AC
comes into play. The derivative is rewritten as an integral, and the integral is approximated by the
saddle point method. The use of saddle point methods is a classic device in AC, and it is powerful too
since it leads to results not easily obtained in other ways. It is not limited to AC. It is considered an
established method in the physics community, but it is virtually unknown in information fusion and
target tracking. One goal of these two papers is to motivate interest in AC by showing how the methods
of AC are applied in these fields. Another goal is to show that the saddle point method is a broadly
applicable technique that provides principled approximations for many problems — regardless of
whether or not exact solutions are NP-hard. The examples given in these papers are all drawn from
papers published in the open literature.
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Combinatorial Problems are Ancient

Stomachion
14 piece dissection
puzzle attributed to

Archimedes (c. 287 Bc-212 Bc)
(before NATO expansion) /
* Wikimedia Comyqon.

 Archimedes palimpsest

— Unique, 10t century Byzantine parchment copy

— In 13t century it was scraped, washed, folded in half,

turned 90 deg., and overwritten with liturgical text

 How many ways can the 14 pieces be

arranged into a square?
* Enumeration is the natural method
* |sthere an analytical method?
 Whatis “analytic combinatorics”?
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Combinatorial Problems are Modern

*  Prime Number Theorem. Asymptotic result about the “distribution”
of prime numbers

. X
#{Prlme numbers < x} = 1— as x — o
nx

* Conjectured by Gauss (1791, age 14) and later by Legendre (1797)
and others

* Proved by complex analytic methods in 1896
— Independently by Hadamard and de la Vallee-Poussin

* Thus began the field of “analytic number theory”

 “Elementary” arithmetic proof was discovered in 1949, independently
by Selberg and Erdos
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Analytic Combinatorics (AC)

* Combinatorial questions ask questions about a sequence

g, A1, Ay , A3, ...
where a, isthe number of “configurations” or “things” of interest
* Intracking, configurations are often “hypotheses” about the data
* Combinatorial enumeration
— How does a,, growasn — o ?
— Bayesian estimation in bivariate problems
* Combinatorial optimization
— What is the best, or optimal, configuration?
* Analytic Combinatorics approach

— Map all hypotheses into a generating function (GF)

— “A GF is a clothesline on which we hang up a sequence of numbers for display”
(generatingfunctionology, H. Wilf, CRC Press, 2005)
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Why Complex Analysis

* GFs are functions of a complex variable, z
* GFs are analytic functions — classic 19" mathematics
* Why do they help solve discrete problems?

 “Why” is for philosophers. Nonetheless ... possible answers

— Discrete problems often have hidden regularities

* Examples in game theory, graphs, and specialized math problems
(“Inevitable Randomness in Discrete Maths” by J. Beck, AMS Pubs, 2009)

— Regularities can often show up in the “dual” (frequency) domain, z

» GF(z™1) is the z-transform of the sequence an

— Concentration of measure
* Much more broadly applicable than central limit theorem

— The success of random projections for NN design
* “Random kitchen sink” (Rahimi and Recht, 2008)

* “How” GFs work is a question for everyone
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Probability Generating Function (PGF)
» Definition: G(z) = Y=o an 2"

— Z is the “indeterminate variable” For us, it is a complex variable.

— Itis a FORMAL power series — it does not need to converge

« Wecallita PGFwhen a, =Pr{A=n}>0and G(1) =1

— PGFs are analytic inside the disc |z| < 1
— Moment generating function: M(t) = G(et!)
— Characteristic function: ®(w) = G(e“"/‘_l)

* G(2) “encodes” probabilities — it characterizes the distribution

* To decode, differentiate G(z)

Pr{A =n} = %G(")(O) =14

n
nldzm"l,—

G(z)
0

* You can also extract summary statistics from the derivatives

— Mean number: E[4]= G'(1) =%‘ B G(z)
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Care and Feeding of GFs

* GFs are rarely found by summing the series

 They are more often derived from first principles
— Known recursion (AR model) — solve for the GF (e.g., Fibonacci)

— Decomposition into smaller parts
* Independence: GF of asum —> product of GFs
* E.g. How many “heads” with n coin flips

— ldentical coins: G(z) = (q + p 2)™
— Non-identical: G(z) = (q1 + p12)...(qy, + Pr2)
* More fun with GFs: Random numbers of randomly types of coins

— Suppose that we flip n coins a random number, N, of times
— Then the GF of the total number of heads is

Hy(G(2)) = Hy((q1 + p12)..(qn + Pn2))
— “Great fleas have little fleas upon their backs ...”

e GFs are also powerful models of if-then-else structures
* Sometimes GFs are easy to find, sometimes not
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Example: Making Change

How many ways to make €100.00 in coins?
Expand the question to any euro value and find the GF:

|
(1-z)1- z* )(1 - z )(1- 210)(1 —z% )(1- z”° )(1- z'% )(1- 2200)

10000

G(z) =

Exact answer is the coefficient of z
— To find the answer, just differentiate G(z) 10,000 times ©
=1,133,873,304,647,601 =~ 1.133 x 10715
Saddle point approximation (can be computed by hand)
=1.145 x 10715 > less than 1% error
— Homework: Find a way to enumerate the solutions
This almost-a-toy problem is due to Polya (c. 19107?)
— Partition function (Hardy and Ramanujan, 1918)
It’s an unusually long road from here to tracking

— Measurement assignments = GFs =» Derivatives =» Cauchy Integral
=» Saddle point approximation = Particle filter weights
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Assignment Problems in Tracking

o Target measurements % Known targets

o False alarms < Possible targets

One Hypothesis: An assignment of measurements to targets and false alarms
Likelihood function is sum over the set of all feasible hypotheses
Hugely impractical sum in many applications
Note: Two unresolved targets are depicted. Adds complexity.
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Combinatorial Methods in Tracking

e Many information fusion problems are inherently combinatorial

— Tracking — one or more targets in clutter, multisensor, and batch
— High level fusion too: Integer Linear Programming (ILP)
Traditional approach in tracking is to enumerate all "feasible" combinations
— Natural and intuitive
— Exploits domain knowledge to find and prune feasible combinations
— Hard to use for large scale problems
Classical alternative to enumeration
— Use generating functions ¥ and complex analysis (LaPlace c. 1810)
Analytic Combinatorics: it is equivalent to enumeration
— Discovery Step

o Encode the problem into a generating functional W
— Analysis Step

o Decode W by differentiation
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Discovery Step

o Key Idea
— Derive ¥ from first principles, exploit the problem structure
— GF's become functions of functions (a.k.a. functionals)

— Fear not, functionals convert to ordinary GF's given measurements

— GF's in tracking are multivariate

e Usually bivariate for one sensor: targets and measurements
e Bayes Theorem has GF form := a ratio of derivatives of the GF
e U incorporates all the problem assumptions

— Independent targets/objects

— Conditional independence of measurements, sensors, targets
e Tracking filters are derived by decoding W

— No loss of information in encoding or decoding

e The factorized form of W is basis for taxonomy of tracking filters
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Analysis Step

Many things can be done with W without explicit enumeration
— Event probabilities are the derivatives of ¥ at the origin

— Generating function for Bayes Theorem

U (targets| measurements)

Bayes
= ratio of derivatives of U(targets, measurements)

— Derivatives of

Bayes 1€ the target conditional probabilities

Exact derivatives of W are as hard to evaluate as

computing exact event probabilities by enumeration!

o Analytic Combinatorics

— Recast derivatives of ¥ as integrals
o Cauchy Residue Theorem (1825)
— Derive approximations to the derivatives

o Saddle point method (also called method of stationary phase)

o Established technique in math and
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AC Taxonomy of Tracking Filters™

Bayes-Markov (BM)

\
Bayes-Markov + Detection (BMD)

PDA = BMD + Clutter

\4
JPDA = PDA with N objects

!

JPDAS = JPDA + Superposition

\4
CPHD = JPDAS + Random N

)

> |[PDA = PDA + Existence

A4

JIPDA = IPDA with N objects

Tree extends to
Multisensor and
Batch Filters

A4

A4

MB = JIPDA + Superposition

MHT = JIPDA + Hypotheses

\\4
MBM = MB + Hypotheses

A4

PHD = CPHD with Poisson point process

/

MHT without Spatial
Diversity

I

LMBM = MBM + Labels | <«

Equivalent
(one scan)

*Analytic Combinatorics for Multiple Object Tracking, by R. Streit, R. Angle, and M. Efe, Springer, 2021
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Justification of the “Main Line”

Classic Bayes-Markov .

Exactly one target and one measurements

L o =[ [ 0201 wp v = [0 )] [, s0p(r 1 0dy e

Bayes Theorem

PDA| filter: Bayes-Markov + missed target detections and false alarms

L v e =¥ (@) [({he0 u()| 1= Pd(x) + PA], g0 p(y | 00y || s

CPHD| intensity filter:

3 ¥ he)=¥"(9) Gy (Y™ ()

PHD| intensity filter:

JPDAS| intensity filter:

N
i/ LPJPDAS(h,g) _ \PFA (g) III\PPDA (h,g)

JPDA| filter: N targets, independent, with missed target detections and false alarms

N
\L \PJPDA(hl’"”,hN,g)Z\PFA(g) lt[l\PPDA(hn’g)

Each target has its own space: &,
Impractical : NP - hard

JPDA with Superposition = /4 =...=h, =h
Fast: O(NxM)

JPDAS with random N with GF G, (z)
Fast

CPHD with Poisson distribution on N

\PPHD (ha g) = \PFA (g) GPoisson (\PPDA (h’ g)) Fast

organization
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End of the Beginning — Complexity Worsens

* Multisensor
Single target MS/PDA 1s NP-hard

M/ PDA (h, s €)) = A (2) J.S{h(x) y(x)H [l—PdK(X)+Pd£ (X)J‘Yﬁ gy (J’)pg (y]x) dy:|}dx
(N —— l=1

—  MS/PHD intensity is NP-hard

PN (1, ) =P (g) Gy (U (B 81))

e Batch of length K
— GFis a K-deep nest of the form ¥ = G(G(...(G(h,g))...))
— With Poisson distributions, GF is exponential tower of height K
 “Extended” targets are not point scatterers
— Unknown number of targets, each with an unknown # scatterers
— GF is an exponential tower, under Poisson assumptions

* Unresolved targets
— Evaluating the “natural” GF is itself NP-hard
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NP-hard™ Likelihood Functions

e Likelihood functions are often combinatorial

— E.g., they are sums over feasible assignments

— Too many assignments = NP-hard
* At scale, NP-hard likelihoods are roadblocks

— Approximations are inevitable
* SMC particle filters compute likelihoods
* Particle intensity filters compute intensities for each particle
* Either way, exact calculation is doomed for NP-hard problems
* Use saddle point approximation

— Stationary phase, “stationary action”

— It can be remarkably fast and accurate

— Itis 100% free of all enumerations

*Loose/y speaking, a problem is NP-hard if it is impractical to solve using any known algorithm.
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Analytic Combinatorics Method

* Find the probability generating functional, denoted ¥
* Given the data {yq,...,yp}

* Reduce PGFL to a multivariate function, W (f3)

M

—> Substitute a train of Dirac deltas: BmOy,,
m=1

—> Deltas replace integrals with samples of the integrand

* SMC particle filter weights are derivatives of W([3) at 0
w(x) = Weight of a particle at x

dM
vV s Py
TBdpy | V)

* Particle weights for intensity filters are ratios of derivatives

oC

e No information loss in this formulation
 Terms in derivative map 1-to-1 to feasible combinations
» BUT = we never take these derivatives
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Saddle Point Approximation

* Write derivatives as Cauchy contour integrals
1 qs LI"(,B) dp,---dp,
(27Z'i)M C(n) C(FM)ﬂl.“ﬂM B Py

* |ntegrand is guaranteed to have a unique saddle point

w(x) oC

e Thisisa point 8 1.,y > 0 such that the Taylor series

LINEAR TERM IS| Thj
¥ () _ e¢(,8) — exp ¢(ﬂA1-M) N - This property d?ﬁnes
BB, : ZERO AT p,.y, the saddle point

of ¢ at
* Almost Gaussian =2 if contours pass through saddle pt.
* Everything is exact and error-free up to this point

N %[IBI:M B ﬁle}T {Hessian Matrix} [,BI:M B ﬁle} N H.O.T.}
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Approximation and Bound

* The saddle point
particle] N ¥(p)
at x (zﬂ)M/z\/det(Diag(,é)TH¢(,3A) Diag(,é))

— The approximation is asymptotically accurate when there is a large
parameter and certain “admissibility” conditions hold.

— No obvious large parameter here

w(x)=p (yle

 The saddle point bound
particle} . \P(IB)

atx | Qn)M"?

— The bound always holds, no large parameter, no need to satisfy
admissibility conditions.

w(x)=p [yl:M
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JPDA Example — 2 Measurements, 4 Targets

3_
Approximation Contours:
20| 5 g Solid — Exact
117165 LR | -
R 7y 0, H(7) =8 | Dashed — Approx
—7T| T
- Zero
1L Contour
Lines
7t
~at
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GFs as “Action”

*  Physics defines the “Action” S = fttlz L(q(t),q(t),t) dt

— Use calculus of variations to minimize £ = Lagrangian
e Euler-Lagrange equations

— “The Statistical Physics of Data Assimilation and Machine Learning,” Henry
Abarbanel, Cambridge Univ Press, 2022

* Analytic combinatorics
— Paths are the circles of radii 5
— Define the action as

Y(p
$(B) = 10g#= log ¥ (B) —log (- fy) =
:B1 :BM

— Minimize the action to find the best paths (circles)

/- argn,%in{log‘P(ﬂ)—10g(,31“':3M)}

 The combinatorial action is at or near the saddle point
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Fixed Point Iteration for the Saddle Point™

* Necessary conditions for the saddle point
— Set the gradient of logW(B) — Y., logB,, =0
— This sets up a natural fixed-point style iteration

 Example: JPDA

— Computing the fixed point for JPDA is fast. The fixed-point
iteration converges monotonically.

— Approximating particle weights using the saddle point bound
is essentially linear complexity

— The complexity of the saddle point approximation for a
particle weight is governed by det(Hessian). It is shown in
the paper (using Weinstein—Aronszajn identity) that this
complexity is either O(N3) or O(M?3), whichever is smaller.

* ”On particle filters with high complexity combinatorial likelihood functions,” S. Ferguson, J. Silver,
R. Streit, ISIF Fusion Conference, Linkoping, Sweden, July 2022

organization

cso
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y-coordinates in meters

Simple single target
PDA particle filter
41000 example
Exact = GREEN
Saddle point = RED
1500

x-coordinates in meters

-1000 -500 500 1000
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Particle Weight Correlation
Exact to saddle point

0.9998 -

= s Mgl |
=Tt

0.999

0.9988 -

0.9986
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Particle Weight Correlation
Exact to saddle bound

=
s IV 1 ][ /V V V”

0.992 -

0.99

0.988 |- KJ

0.986 [

0.984 -
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Concluding Remarks

Saddle point method avoids all enumeration

Applicable to likelihood functions with a known probability generating
function
The long road from AC to tracking applications
— Measurement assignments =» GFs =» Derivatives =» Cauchy Integral
=>» Saddle point approximation =» Particle filter weights
First example is NP-hard filter: JPDA
Fast fixed-point calculation for each particle
Hessian-free saddle bound approximation
--- essentially linear
Saddle point approximation
High correlation of exact and approximate particle weights
— How to evaluate approximation when exact is NP-hard?

— More examples in the next lecture






Machine-Precision Numerical First
Derivative for Free

It looks like magic and feels like
magic,

but it is for real
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The Theory is Simple

e Given a function f(x) that is analytic in neighborhood of x, € R
e Taylor series expansion, with sufficiently small £ € R
4 ' . " . 2 m o 3
f(xo+ig) = f(x)+ f'(x)(ig)+ 5 f"(x) (ie) +% 1 "(x,)(ie) + HOT.
e Imaginary part is
Im f(x, +ig) = f'(x))e —% f"(x,)e’ + HOT.

e Divide by ¢ and rearrange terms:

S(x) = Im S (x, +ig)+0 ( ) 2" order accuracy

e To find the derivative of / at x, on the real line:
— Perturb x, in the complex direction
— Evaluate the function in complex arithmetic
e Accurate to machine precision !
e Central finite difference is also 2"’ order accurate

— In practice, choosing ¢ is tricky subtraction errors for small &



organization

COLLABORATION SUPPORT OEFICE

Not All Second Order Methods Are Created Equal

Table C.1 Complex step and central-difference estimates of f” at xo = —0.6784; the most accurate
significant digit (rounded) is printed in bold font.

€ Complex Step Central-Difference

le-04| -0.002284933782882690 | -0.002284956126530346
le-05| -0.002284944840968425 | -0.002284945077590805
le-06| -0.002284944951549592 | -0.002284944233821307
le-07| -0.002284944952653912 | -0.002284954447873133
le-08| -0.002284944952664632 | -0.002284927802520542
1e-09| -0.002284944952665128 | -0.002284394895468722
le-10| -0.002284944952664094 | -0.002282618538629320
le-11] -0.002284944952664482 | -0.002309263891220326
le-12| -0.002284944952664966 | -0.001332267629550188
le-13| -0.002284944952665370 | +0.008881784197001250
le-14| -0.002284944952665749 | -0.088817841970012500
le-15] -0.002284944952665591 | -0.888178419700125300
le-16| -0.002284944952665591 0.
Exact| -0.002284944952665635 | -0.002284944952665635

exp (cos(x) — 2 sin(x))

fx) = fxo+h) - flxo—h)

2h

1 + x2

Central difference: f'(xy) =
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Applications in Tracking

* Find the GFL and secular function of the problem
 Adopt a particle filter model

* Need the weights of every particle

* Weights are ratios of derivatives of the secular function
e Use the complex step method

 JPDAS example used the method to evaluate weights of the particles
in the intensity function
— Used the method exactly as presented here
e Cross-derivatives require a multi-complex step method:
— Unnecessary to take symbolic derivatives at all (!)
— Computational complexity — becomes the question
— How hard is it to evaluate the secular function?



‘organization

COLLABORATION SUPPORT OEFICE

Mitigating Computational
Complexity using Methods

from Analytic Combinatorics
11

Roy Streit
Metron, Inc.
1818 Library Street
Reston, VA 20190
+1 (703) 787-8700
streit@metsci.com or r.streit@ieee.org

Artificial Intelligence for Military Multiple Sensor Fusion Engines
NATO Research Lecture Series SET-290, 2022
Rome 26-27 Sep; Wachtberg 29-30 Sept; Budapest 03-04 Oct


mailto:streit@metsci.com
mailto:r.streit@ieee.org

NATO

—— | | \
) @IVWE SCIENCE AND TECHNOLOGY ORGANIZATION
' COLLABORATION SUPPORT OFFICE

NP-hard Likelihood Functions

* Likelihood functions are often combinatorial
— E.g., they are sums over feasible assignments
— Too many assignments = NP-hard
* NP-hard likelihoods are roadblocks at scale
— Approximations are inevitable
* Mitigate complexity by using saddle point approximation
— Stationary phase, “stationary action”
— It can be exceedingly fast and accurate
— It is 100% free of all enumerations
e Useful in high level information fusion
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Bayes-Markov (BM)
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Bayes-Markov + Detection (BMD)

PDA = BMD + Clutter

\4
JPDA = PDA with N objects

!

IPDA = PDA + Existence

organization
C S0

Tree extends to
Multisensor and
Batch Filters

JIPDA = IPDA with N objects

JPDAS = JPDA + Superposition

A4

MB = JIPDA +

Superposition MHT = JIPDA + Hypotheses

\4
CPHD = JPDAS + Random N

)

/

MHT without Spatial

MBM = MB + Hypotheses

Diversity

LMBM = MBM + Labels

PHD = CPHD with Poisson point process

I

Equivalent
(one scan)

*Analytic Combinatorics for Multiple Object Tracking, by R. Streit, R. Angle, and M. Efe, Springer, 2021
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Examples

JPDA with Superposition

— Fast, not NP-hard
* Unresolved targets

— Crossing and parallel tracks
Multiple target tracking (JiFi)

— Single sensor
— Multiple sensor, bearings-only example




JPDAS and PHD Intensity

[3rget stgte superposition
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Secular Function for JPDAS

e JPDA with N non-identical targets and false alarms

N
Wypon s 9) = (T Vinan (b 9)) W50 (9
e JPDAS is JPDA with N identical superposed targets

s (19) = Cypp (e 9) = (Ui () W0 (0)

—> Superposition dramatically changes the PGFL

« — Dirac delta trains for one superposed target and M measurements
hz)=1+ao;6(x—2;) and g(y)=208 oy—y,)

— Secular function of GFL of exact Bayes posterior with M measurements

U ppas(@ ) = (Lineaﬂ”(oz) + Bilinear(a, ﬁ))N > eL’inear(ﬁ)

e Mixed derivative w.r.t. 3 gives sum of Elementary Symmetric Polynomials
— Complexity is O(MN )
e First derivative of the result w.r.t. a; is proportional to the intensity at ;

— Complex step method is fast and very accurate (often attributed to Cleve Moler)
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Example

* Six nearly constant velocity targets in the plane

e Pd=0.9at all scans at 1 second intervals
* Linear-Gaussian 4D (pos-vel) models for convenience
* Position measurements only, equal variance in x and y

* Poisson clutter with mean of 75. Translates into 0.66 clutter points
per 3 sigma_measurement radius circle (on average)

* No gating
e Particle filter implementations with 100,000 particles at each scan
* Filters implemented -- Same data used for both
— Standard PHD
— JPDAS
e States estimated using GMM Matlab function (R2017b)
— No effort was made to extract target tracks
* Heat map of particles accumulated over all 240 scans



AR NATO w:l

N ZIISIWSS  SCIENCE AND TECHNOLOGY ORGANIZATION
COLLABORATION SUPPORT OFFICE

JPDAS PHD

AN . = = =ground truth . - z 7 1r LA v = = =ground truth . -
- T Y ) GMM means L . e . . 7 GMM means L
g J o GMM covs final scan | - 3 v + . "W > " o GMM covs final scan |« 5 e
- - o s b L LN ey y — - L
05 L T P 05 R —— L
oy . - A _.. - 1 -
— b b e L, 1 — " b o = |
E 0 - ¥ Ry By [ L - o Ry
X - L iy 5. S TR ot
o !.‘1 L ';‘n'_‘ ] - "‘- L ':":-‘-i -
[1 + i - md [ i e, =l
N e RS T ; po e R -2
050 0, £ T . Pang 1 05 - Fwe X LT o wng B
» o L. & - . .. " ¥ - . W ¥
. (@) e L)
¥ " A .
=1r 1 | —
2 1.5 1 0.5 0 0.5 1 1.5 2 -2 1.5 1 0.5 0 0.5 1 1.5 2
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Heat maps
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Superposition is stronger influence on intensity than the PMF of object number
Unexpected result since JPDAS is a special case of CPHD

[8]
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Unresolved Targets/
Merged Measurements

Ignoring the mismatch between the tracker the nature of the
point measurements has consequences
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GF for Two Unresolved Targets

* Ifresolvable, each target generates at most one measurement
* Ifunresolvable, together they generate at most one merged measurement
* Changes the measurement generating function but nothing else!

e Given r(x,,x,) = Pr{targets at x; and x, are resolved
15X g 2

e By total probability theorem, the measurement GF is the probabilistic mixture

— R UnR
Y(glx,x,)= r(x,x,) ¥ es(g|x1,x2) + (l—r(xl,xz))qj ! eS(g|x1axz)
Objectsfiesolved Objects NOT Resolved

where
same form )

Res — _ 1 1 !
¥ (g|x1,x2)—(1 Pd'(x))+Pd'(x) |, g(»)p (ylxl)a’y){for target #2
WURS (g]x,,x,) = 1= Pd V™ (0, x,) + PAV™ (x,x,) | @(n)p"™ (0] 3, x,) dy

P UnRes (x,,x,)=Pr {unresolved targets at x, and x, generate one merged measurement}
May incorporate models of target strength (radar cross-section)
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Examples
* JPDA with two targets

* Target and measurement models much like in previous
example
— Nearly constant speed
— Number of clutter points per 3 sigma_meas circles is 0.24

 One targetis 10 dB “stronger” than the “weaker” one

r(x;,x,)=1-exp (—%”H(x1 — x2)||) = Pr {targets at x; and x, are resolved}

p (X, x,) =N y ‘ H(wx, +(1-w)x,), R™

w

> lOlog(—

1—-w

Strong | Weak

j:IOdB
* Two examples

— Crossing targets
— Parallel targets
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Strong and Weak
Crossing Targets

JPDA filter

without
unresolved
measurement model

JPDA filter
with
unresolved
measurement model

y (km)

y (km)

-0-57 .. .

0r : .-.~" .
050 BRI
-1 E ! L \"— | | I .| el

2 1.5 1 0.5 0 0.5 1 1.5 2

05F - i

. .|= = ground truth
* .| X JPDA obj1 estimate
X JPDA obj 2 estimate

. * unresolved measurement| |

05 - oo

. _|= = ground truth
" .| X JPDAIRes obj1 estimate
, X JPDA/Res obj 2 estimate

L * unresolved measurel

ment | |

El H . . .
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Maintains both tracks. Inflates variance on weak target near

the cross, but weak target is not “seduced” by the strong one.

rganization

CSO




COLLABORAT

Strong and Weak Parallel Targets

JPDA filter

without

unresolved
measurement model

Weak target track, once seduced by the strong
target, is lost. Anticipated behavior.

JPDA filter
with
unresolved
measurement model

. . |~ — ground truth

X JPDA obj 1 estimate
X JPDA obj 2 estimate
% unresolved measurement| . *

. . |= = ground truth

X JPDA/Res obj 1 estimate
X JPDA/Res obj 2 estimate ©o
3%  unresolved measurement| . * =~

3
Maintains both tracks. Inflates variance on weak
target, but weak target is not “seduced” by the L&
strong one.
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General Problem of Unresolved Targets

* Suppose there are N targets

* Any combination of them could be unresolved
— Each needs a Pr{unresolved} function
— Each needs a GFL
 The overall GFLis a sum of 2N GFLs
— This GFL itself is NP-hard
— The two-target approach is intractable in general
e Alternative
— Modify Drummond’s measurement peak picking rule (~1965)

e “at most one measurement per target”
— Allow each sensor report to have “multiplicity”
— Changes the combinatorial problem
— The resulting GFL is tractable
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JPDA-PHD/Intensity Filter

JiFi (Joint iFilter)

255/221/0

“JPDA Intensity Filter for Tracking Multiple Extended Objects in Clutter,” R.
Streit, ISIF FUSION Conference, Heidelberg, Germany, July 2016
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PHD Intensity Filter

e PHD = Intensity = fk—1| () =E [N (x) | all measurements up to and including time tk—l]

=~ Poisson approximation used to close the Bayesian recursion at each step

® Predicted target intensity at x
S ) = E [ New targets] + E[OIld targets (thinned by death and moved to new states)]

e Information update at x
Expected number of targets @ x with measurement Zj

m
x) = (1-P(x x) +
fk|k ) ( p ))fkv‘_l( ) JZ=:1 Expected number of all targets and FA with measurement

Zj

Intensity of Undetected targets
E[N{targets @ x gave rise to the j-th measurement, z;}]

Z: X PD X X
(Mahler, 2003) = = — pk( J| ) k ( )fk|k—1( )
Zk i”lol’(Zj) + ISpk(Zj |S)PkD(S)fk|k—1(S)dS

FA Intensity = measurement Intensity from all targets

Interpretation in Stone, Streit, Corwin, Bell, Bayesian Multiple Target Tracking, 2014, p. 179
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JPDA Intensity Filter* (JiFi)

JPDA: n is number of target Groups = no birth or death of Groups

Given intensity functions for every target Group

fkl_1| () =E [N (x) for target group I | all measurement up to and including time # k—l}

Predicted intensity for every target group

fkfk—l (x) = E[ New targets in group l] + E[OId targets in group I (thinned by death and moved to new states)]

Bayesian information update for every target group

m Expected number of targets @ x in group i with measurements z;

@ = (1=pl 0+ 3 /

‘=1 Expected number of all targets in all groups and FA with measurement z g

Intensity of undetected targets
in group 1

Pr{a target in group I at x gave rise to the j-th measurement, z; }

Pl 19 PRI £ ()

Pri i Di i
Alrerzy + ) jS. IHEADY OV AROES
all groups 1
%,—‘J ~~ .
FA Intensity measurement Intensity from targets in group Z

*R. Streit, "JPDA intensity filter for tracking multiple extended objects in clutter," ISIF Fusion Conf., Heidelberg, July 2018
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Single Sensor JiFi

e N =specified number of objects — JPDA

e Heterogeneous objects
— Each has its own state space
— Each has an unknown number of highlights
— Highlights are volatile — use a PHD intensity filter

e One sensor
— Measurements are of object highlights or clutter points
— Assignment problem — highlight-to-object

e Analytic Combinatorics (AC) uses generating functions (GFs)
— GF for JiFi

\IjJiFi(h’l:N’ g) Clutter( ) H \IJPHD Object—Highight (hn’ g)

Different object state spaces <J
Same highlight space
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Multiple Sensor JiFi*

e [ =number of heterogeneous sensors

— Different measurement spaces
— Different (independent) clutter processes
e Spatial diversity is important assumption
— Different sensors see different object highlights
— Sensor processes are statistically independent
e GF for Multiple Sensor JiFi

\IJMS/JiFi(hlzN’ 9y.) = P Uik (P 9¢)

L
[
L N
=11l \chzutter(gf) [l \IIPHD Object—mghzght(hwgé )

/=1 n=1 (J
Different object state spaces

Different highlight spaces
*Angle and Streit, “Multisensor JiFi tracking of extended objects,” ISIF Fusion Conf, July 2019
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Deriving the Multiple Sensor JiFi

* Different measurements from each sensor

{y(fajg): Iy :1"“’m€} ¢=1,..,L
e Substitute
— For each sensor: weighted train of Dirac deltas at the measurements

( ) ]gzlﬁ( 7]) Dlrac Yy— y(a”)

— For each object:

h (z)=1+a,é (x—xn)

N~ Dirac

e Result is the “secular function”
— Ordinary multivariate analytic function of the weights o and B
— Bayesian posterior intensity function

— =2 Logarithmic derivative of the secular function

— “Multisensor JiFi Tracking of Extended Objects,” Angle and Streit, 2019 ISIF Fusion Conference,
Ottawa, 2019
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Multisensor JiFi Recursion

e Intensity functions at the previous scan
for each object: f (z,) n=1..,N
e Predict object intensity functions at current scan
for each object: f"(z, )
e Update intensity function for every object-sensor pair
f.¢(z,) = PHD filter with sensor £ measurements
-- probability of detection Pd
-- measurement likelihood function
- predicted intensity function frj' (z,,)

e Bayesian update of intensity function for each object
L
(@) = 621 Jne(2y,)

e Closes the Bayesian recursion
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Single Sensor JiFi — Two Group Example
Simulated target groups in 1-D

— State space is position only on the interval [ 8, 8]

Each group has a different maximum number of highlights
— Number of detected highlights per group is binomially distributed
— Individual highlights are Gaussian distributed about the group center
— The groups have different spreads

Nearly constant motion
p(x, | x,.;) = Gaussian(x, | x,,, process noise)
Measurements z are of individual target highlights

— Measurements are i.i.d. conditioned on target position
p(z | x,) = Gaussian (z | x,, measurement noise)

Clutter is uniform Poisson point process on [— 8, 8]
Filters are implemented on a fine 1-D grid

— No Monte Carlo particle approximations, Gaussian mixtures, etc



. ganizat <
Well |
Separated 3 M :
e —
Groups X °[% O R o x * Fxix"1A=60
L A % X ]
. Poisson
- ¥ Clutter
XX
PR S vl SRR s % xogk . % . x1  Mean of
= 5 x X x x ¥ X X
- x x A% x Lk P x A=585
-8 .x x::‘. . ':'F | " 1 x. x\-’ 1 1 L 2 " 1 1 xxf k4 N 1 i L5 X 1 ok H
0 20 a0 &0 B0 700 points/sca
Time: 100 scans at 1 sec intervals n
Group Extent, o 0.5 0.5
Maximum number of targets in group 8 3
Pd of individual targets 0.5 0.8
Target process noise, o 0.2 0.2
Measurement noise, o 0.5 0.5



Blue Group

JiFi Outputs
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Red Group

Initializations are diffuse: Blue on [0, 4]

and Redon [-4, 0] A=60

Estimated number of nghhghts per

| Group - Std. dev. = 1.67

[\/\ /\/\/\/\/\/A M f‘\vj\\ ﬂ s, s Z :8
VAAVAVAVANRY I VAR WOV AR

f/_/\ /J\N\\/\/A\_/A\/\//vv\*ﬂ‘” /\VW;\ AA ,\\/\//\/\ o 3
% e V:Std dev. = 01398

[24]
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Keep everything the same but make the Blue group twice as “Wide”

Double the Spread of the BIue Group
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Double Blue Target Spread — Intensity Leakage

Blue Group

Red Group

Intensity
“‘Leakage”

Estimated numb

er of Highlights per Group

::AV[\/\/\A/\/V\A MA/\_K\A,, I 58

/f/\/“\/v\ AN A A

\/\/ \J\/\/W\/ A 3

L \J\/\._/\/\/

A N
"\/"“‘\/\/ WVU |

[26]
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Intensity Leakage — 3-D Plot




R

Target-Specific Centroids

 Compute the weighted centroid of each target’s intensity
* Plot centroids as function of time
* Leakage causes tracking bias

time
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Multiple Sensor JiFi Examples

* Five sensors

— Example 1: Position-only measurements x-y
— Example 2: Bearings-only measurements

* Four objects — nearly constant velocity in x-y plane

e Simulated object highlights
— Each object has 8 potentially detectable highlights per sensor, except one which has 5
* Three objects have 5x8=40 highlights total and one has 5x5=25
— Highlight Pd =0.5 for each sensor
— |ID Gaussian distributed about the object’s “point of interest”
— Highlights are resampled at each scan — do not persist scan to scan

e Particle filter with 10,000 particles (display random subset of 1000)
— Number of scans = 100
— Initiate particles for each object
* Uniformly distributed over “large” object-specific region

* Little overlap in the regions
* Box-shaped region in 15t example; Star-shaped in the 2" (details in Fusion 2019 paper)
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Example 1 — Position-Only

* Use different colors for each object’s particles
* Region of regard is R = [-8,+8] x [-8,+8]
 FAis IID uniformly distributed over R at each scan

150 FA points per sensor per scan 1000 FA points per sensor per scan

8 x X x X " x| . x X 8 x & _
xx %y % x - x,& Xxx X X @ object1 % @ object1
x x§x x % x| @ object2 @® object2
X
6 X X *xE * oxx, XTx ® object3 6 @ object3
x % J %
L X x * x % x* xx x % * x object 4 object 4
x
. x x % )?“xx x  xx x" x’*x &8‘ O obj ground truth loc . O obj ground truth loc
ek T3 x’}(& x . * X’?g" x X %o ¥ sensors i. ¢ ¥ sensors
x x x x
X % Xk xX " Xx XX X clutter X clutter
x &t ﬁ&‘x’* £y % N
2 4 xx"xxf x %X 4, % 2
x X x X xX % % wx X
x
- x E Xus " x * X, % 80%,‘(
0% x x XX % x x % 0
> xX X * o X xx X X >
x % Xy X x x
x)?x x x xX x % X5
x X x xx" X X o Xy % x x
x x X x % x x x x
x % X 2 S
2 % e T omk X x x . x x < 27
% x % xx® L x % X x
x X X % % x x %
x kel X X ? x x x %
£ X, x X xox * x X % % x x
4 |x
4fxx % * * % x % x xr& %X * x*x 4 % x
o K, X x X x x »F x
xg ”: X x . Xx x x X xx X
x % xo X Xy ,éx x x X x %, x’* x
6 | xxgt N x X oxx % X % *x 6
x
xx Yok * % ;"8 » x xSx 2 "
’)‘(Xx ’;Xx,v( x Xx x X % F xx*‘x ){ Ay @
x 20 x
-8 [X o | * L 3 »** x 1 o o % X x ** 8 )
8 6 -4 2 0 2 4 6 8 8 6 4 -2 0 2 4 6 8

30 Object particles (COLOR) are less dispersed for FA = 150 compared to FA = 1000



organization

COLLABORATION SUPPORT OEFICE

Example 2 — Bearings-Only

e Bearing clutter is NOT depicted

Leakage — object particles

100 FA points per sensor per scan
become entangled due to

Different trajectories from Example 1

T ey

object 1
object 2 ~

Jl S~ -
object 3 =\
object 4

obj ground truth loc

sensors

Fre b ‘ ‘ Leakage: Look close to see mix
x 5 green, 6 purple, 8 blue
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Estimated Total Highlight Count for Object #1: Example 2

obj 1, SUM ALL SENSORS
60 | | | | |

35

Poisson error

5 sensors, 8 highlights / sensor, Pd = 0.5 bars + /70

Simulated highlights (total): 40
Multisensor JiFi estimate: 45.3 -

# highlights

30

25 |

JiFi highlight count is biased because simulated highlights do not persist from scan to scan

80 90 100
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Multiple Sensor JiFi

* Multisensor JiFi is low computation complexity
 Makes few assumptions about object structure
* Works with sensors with low observability
— Bearings-only sensors
e Spatial diversity assumption
— Important — if the goal is to estimate highlights
— Less important — if the goal is to track the objects

Spatial leakage
Occurs when object tracks are too close for too long
Analogous to leakage in time-frequency analysis
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Applications of Saddle Point

* Intensity is analogous to power spectrum

— Whitening the intensity function for known targets
* Notched filters and the pair correlation function
In the PHD intensity filter, conditioned on a target at x,,

PHD(x|x,) = {1 - Clux) }PHD(x)
PHD(x,)PHD(x,)

. J

-~
Pair correlation function

— Pair correlation too difficult to compute for other filters, but can be
approximated by saddle point methods

* Batch processing over K scans of data
— Track before detect strategy

— GFL is a K-deep “exponential tower”
* not amenable to symbolic methods

— Can be approximated by saddle point methods
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Concluding Remarks

* Analytic Combinatorics (AC) and saddle points
— A story about generating functions
— Solving NP-hard problems with easy saddle point approximations
— Exact solutions when sensor and other models are imperfect

* Benefits of AC to tracking

— Unified methodology organized by AC
* Classical Bayes-Markov, PDA, JPDA, CPHD, PHD
* JIPDA, MB, MBM, LMBM, and MHT

— New hybrid filters -- JiFi and SuperliFi
— New ways to formulate known problems (e.g., unresolved targets)
— New and classical approximations

 ACis a Bridge to High Level Information Fusion
— Integer linear programming
— Natural language processing
— Approximate common subgraph
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