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Abstract 

 

Analytic combinatorics (AC) is a classical mathematical field that in the last few years has found new 
applications in information fusion and multiple target tracking.  Many problems in these applied fields 
are severely handicapped by the fact that exact solution algorithms are NP-hard.  What AC contributes 
to these fields is two-fold.  Firstly, AC formulates problems in terms of a generating function or 
generating functional.  This formulation is exact and complete, taking the form of a single concise 
equation.  Exact filters are derived from these functions by differentiation.  Because the derivatives are 
exact, they too suffer from being NP-hard to compute. This is where the second contribution of AC 
comes into play.  The derivative is rewritten as an integral, and the integral is approximated by the 
saddle point method.  The use of saddle point methods is a classic device in AC, and it is powerful too 
since it leads to results not easily obtained in other ways.  It is not limited to AC.  It is considered an 
established method in the physics community, but it is virtually unknown in information fusion and 
target tracking.  One goal of these two papers is to motivate interest in AC by showing how the methods 
of AC are applied in these fields.  Another goal is to show that the saddle point method is a broadly 
applicable technique that provides principled approximations for many problems – regardless of 
whether or not exact solutions are NP-hard.  The examples given in these papers are all drawn from 
papers published in the open literature.    
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• Stomachion
14 piece dissection

puzzle attributed to
Archimedes (c. 287 BC – 212 BC)

(before NATO expansion)

• Archimedes palimpsest
– Unique, 10th century Byzantine parchment copy
– In 13th century it was scraped, washed, folded in half, 

turned 90 deg., and overwritten with liturgical text 

• How many ways can the 14 pieces be
arranged into a square?

• Enumeration is the natural method
• Is there an analytical method?  
• What is “analytic combinatorics”?

Combinatorial  Problems  are  Ancient

[2]
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• Prime Number Theorem.  Asymptotic result about the “distribution” 
of prime numbers

• Conjectured by Gauss (1791, age 14) and later by Legendre (1797) 
and others

• Proved by complex analytic methods in 1896 
– Independently by Hadamard and de la Vallee-Poussin

• Thus began the field of “analytic number theory”
• “Elementary” arithmetic proof was discovered in 1949, independently 

by Selberg and Erdos

Combinatorial Problems are Modern

[3]

Prime numbers     as  
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• Combinatorial questions ask questions about a sequence
𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2 , 𝑎𝑎3 , …

where  𝑎𝑎𝑛𝑛 is the number of “configurations” or “things” of interest  
• In tracking, configurations are often “hypotheses” about the data
• Combinatorial enumeration

– How does 𝑎𝑎𝑛𝑛 grow as 𝑛𝑛 → ∞ ?
– Bayesian estimation in bivariate problems

• Combinatorial optimization
– What is the best, or optimal, configuration?

• Analytic Combinatorics approach  
– Map all hypotheses into a generating function (GF)
– “A GF is a clothesline on which we hang up a sequence of numbers for display” 

(generatingfunctionology, H. Wilf, CRC Press, 2005)

Analytic Combinatorics (AC)

4



• GFs are functions of a complex variable, 𝑧𝑧
• GFs are analytic functions – classic 19th mathematics
• Why do they help solve discrete problems?
• “Why” is for philosophers.  Nonetheless … possible answers 

– Discrete problems often have hidden regularities 
• Examples in game theory, graphs, and specialized math problems 

(“Inevitable Randomness in Discrete Maths” by J. Beck, AMS Pubs, 2009)

– Regularities can often show up in the “dual” (frequency) domain, 𝑧𝑧
• GF(𝑧𝑧−1) is the z-transform of the sequence 𝑎𝑎𝑛𝑛

– Concentration of measure  
• Much more broadly applicable than central limit theorem 

– The success of random projections for NN design
• “Random kitchen sink” (Rahimi and Recht, 2008)

• “How” GFs work is a question for everyone

Why Complex Analysis
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• Definition:   𝐆𝐆 𝑧𝑧 = ∑𝑛𝑛=0∞ 𝑎𝑎𝑛𝑛 𝑧𝑧𝑛𝑛

– 𝑧𝑧 is the “indeterminate variable”   For us, it is a complex variable.
– It is a FORMAL power series – it does not need to converge

• We call it a  PGF when  𝑎𝑎𝑛𝑛 = Pr 𝐴𝐴 = 𝑛𝑛 ≥ 0 and  𝐆𝐆 1 = 1

– PGFs are analytic inside the disc  𝑧𝑧 < 1

– Moment generating function:   𝑀𝑀 𝑡𝑡 = 𝐆𝐆(𝑒𝑒𝑡𝑡)

– Characteristic function:   Φ(𝜔𝜔) = 𝐆𝐆(𝑒𝑒𝜔𝜔 −1)

• 𝐆𝐆(𝑧𝑧) “encodes” probabilities – it characterizes the distribution 
• To decode, differentiate 𝐆𝐆(𝑧𝑧)

Pr{𝐴𝐴 = 𝑛𝑛} = 1
𝑛𝑛!
𝐆𝐆(𝑛𝑛)(0) ≡ �1

𝑛𝑛!
𝑑𝑑𝑛𝑛

𝑑𝑑𝑧𝑧𝑛𝑛 𝑧𝑧=0
𝐆𝐆 𝑧𝑧

• You can also extract summary statistics from the derivatives

– Mean number:   E[A] = 𝐆𝐆′ 1 = �𝑑𝑑
𝑑𝑑𝑧𝑧 𝑧𝑧=1

𝐆𝐆 𝑧𝑧

Probability Generating Function (PGF)

[6]



• GFs are rarely found by summing the series
• They are more often derived from first principles  

– Known recursion (AR model)  – solve for the GF  (e.g., Fibonacci)
– Decomposition into smaller parts

• Independence:  GF of a sum   product of GFs
• E.g. How many “heads” with n coin flips

– Identical coins:  G z = (𝑞𝑞 + 𝑝𝑝 𝑧𝑧)𝑛𝑛

– Non-identical:  G z = (𝑞𝑞1 + 𝑝𝑝1𝑧𝑧)…(𝑞𝑞𝑛𝑛 + 𝑝𝑝𝑛𝑛𝑧𝑧)
• More fun with GFs:  Random numbers of randomly types of coins 

– Suppose that we flip n coins a random number, N, of times
– Then the GF of the total number of heads is  

𝐻𝐻𝑁𝑁 G z = 𝐻𝐻𝑁𝑁 (𝑞𝑞1 + 𝑝𝑝1𝑧𝑧)…(𝑞𝑞𝑛𝑛 + 𝑝𝑝𝑛𝑛𝑧𝑧)
– “Great fleas have little fleas upon their backs …”

• GFs are also powerful models of if-then-else structures
• Sometimes GFs are easy to find, sometimes not

Care and Feeding of GFs

7



• How many ways to make  €100.00 in coins?
• Expand the question to any euro value and find the GF:

• Exact answer is the coefficient of  𝑧𝑧10000

– To find the answer, just differentiate G(z) 10,000 times 
= 1,133,873,304,647,601  ≈ 1.133 x 10^15

• Saddle point approximation (can be computed by hand)

= 1.145 x 10^15   less than 1% error
– Homework:  Find a way to enumerate the solutions

• This almost-a-toy problem is due to Polya (c. 1910?)
– Partition function (Hardy and Ramanujan, 1918)

• It’s an unusually long road from here to tracking
– Measurement assignments  GFs  Derivatives  Cauchy Integral

 Saddle point approximation  Particle filter weights

Example:  Making Change

8

2 5 10 20 50 100 200

1( )
(1 )(1 )(1 )(1 )(1 )(1 )(1 )(1 )

G z
z z z z z z z z

=
− − − − − − − −



Assignment Problems in Tracking

9

Target measurements 
False alarms

Known targets
Possible targets

One Hypothesis:  An assignment of measurements to targets and false alarms
Likelihood function is sum over the set of all feasible hypotheses  

Hugely impractical sum in many applications 
Note: Two unresolved targets are depicted.  Adds complexity. 



Combinatorial Methods in Tracking

[10]

Many information fusion problems are inherently combinatorial

Tracking  one or more targets in clutter, multisensor, and batch

High level fusion too:  Integer Linear Programming (ILP)

Traditional ap


 


 proach in tracking is to enumerate all "feasible" combinations

Natural and intuitive

Exploits domain knowledge to find and prune feasible combinations

Hard to use for large scale problems  

Classical 







e

alternative to enumeration 

Use generating functions  and complex analysis (LaPlace c. 1810)  

:  it is  to enumeration 

Discovery Step 

Encode the p

equivalent

nroblem i to a gen

 



Analytic Combinatorics



Analysis Step

Decode   by differentiation 

rating functional 






Discovery Step

[11]

Derive  from first principles, exploit the problem structure

GFs become functions of functions (a.k.a. functionals)

Fear not, functionals convert to ordinary GFs given measurements 

GFs in t

Key Idea
 


 racking are multivariate  

       Usually bivariate for one sensor:  targets and measurements

       Bayes Theorem has GF form := a ratio of derivatives of the GF 

 incorporates _all_ the problem ass




  umptions

Independent targets/objects

Conditional independence of measurements, sensors, targets

Tracking filters are  by decoding   

No loss of information in encoding or decoding 

The factori

derived




 


 zed form of  is basis for taxonomy of tracking filters  



Analysis Step

[12]

Bayes

Many things can be done with   explicit enumeration

Event probabilities are the derivatives of  at the origin

Generating function for Bayes Theorem  

(targets measurements) 

            

without 
 


 |

Bayes

  = ratio of derivatives of (targets, measurements) 

Derivatives of  are the target conditional probabilities 

 


 

  derivatives of  are as hard to evaluate as 

           computing  even

Exact

exact



 

Recast derivatives of  as integrals 

       Cauchy Residue Theorem (1825)

Derive approximations to the derivatives 

       Saddle point method 

Analytic Combinatorics
 



t probabilities by enumeration!



 (also called method of stationary phase)

       Established technique in math and physics



AC Taxonomy of Tracking Filters*

[13]

JPDA = PDA with N objects

Bayes-Markov + Detection (BMD)

Bayes-Markov (BM)

JPDAS = JPDA + Superposition

PDA = BMD + Clutter IPDA = PDA + Existence

MB = JIPDA + Superposition

CPHD = JPDAS + Random N

JIPDA = IPDA with N objects

MHT = JIPDA + Hypotheses

MHT without Spatial 
DiversityMBM  =  MB + Hypotheses

LMBM = MBM + Labels
Equivalent
(one scan)

PHD = CPHD with Poisson point process

Tree extends to 
Multisensor and 
Batch Filters

*Analytic Combinatorics for Multiple Object Tracking, by R. Streit, R. Angle, and M. Efe, Springer, 2021



Justification of the “Main Line”
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{ }BM

Classic Bayes-Markov :  Exactly one target and one measurements

( , ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( | )

PDA  filter:  Bayes-Markov + missed target detections an
BayesTheorem
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( , ) ( ) ( , )

N
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N
N G z

g G h g
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N
h g g G h g Fast= Ψ ΨΨ

Ψ Ψ



• Multisensor

• Batch of length K
– GF is a K-deep nest of the form  Ψ = G(G(…(G(h,g))…)) 
– With Poisson  distributions, GF is exponential tower of height K

• “Extended” targets are not point scatterers
– Unknown number of targets, each with an unknown # scatterers
– GF is an exponential tower, under Poisson assumptions

• Unresolved targets 
– Evaluating the “natural” GF is itself NP-hard 

End of the Beginning – Complexity Worsens

15

MS / PDA

M  

F

S / P /

A

FHD  A MS

1
1

           Single target MS/PDA is NP-hard

( , ,..., ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( | )

MS/PHD intensity is NP-hard

( , ) ( ) Poisson

L

L S Y
h g g g h x x Pd x Pd x g y p y x dy dx

h g g G

µ
=

  = Ψ − +    

= ΨΨ

Ψ

Ψ

∫ ∫∏




   



⇒

( )PDA
1( , ,..., )Lh g g



• Likelihood functions are often combinatorial
– E.g., they are sums over feasible assignments
– Too many assignments NP-hard 

• At scale, NP-hard likelihoods are roadblocks
– Approximations are inevitable

• SMC particle filters compute likelihoods 
• Particle intensity filters compute intensities for each particle
• Either way, exact calculation is doomed for NP-hard problems 
• Use saddle point approximation

– Stationary phase, “stationary action”
– It can be remarkably fast and accurate
– It is 100% free of all enumerations

NP-hard* Likelihood Functions

16

*Loosely speaking, a problem is NP-hard if it is impractical to solve using any known algorithm.   



• Find the probability generating functional, denoted Ψ
• Given the data {y1,…,yM}
• Reduce PGFL to a multivariate function, Ψ(β) 

 Substitute a train of Dirac deltas:   �
𝑚𝑚=1

𝑀𝑀
𝛽𝛽𝑚𝑚𝛿𝛿𝑦𝑦𝑚𝑚

 Deltas replace integrals with samples of the integrand 

• SMC particle filter weights are derivatives of Ψ(β) at 0

• Particle weights for intensity filters are ratios of derivatives 
• No information loss in this formulation
• Terms in derivative map 1-to-1 to feasible combinations 
• BUT  we never take these derivatives 

Analytic Combinatorics Method

17

( )1
1 0

( )

, ,
M

M
M

w x Weight of a particle at x

d
d d β

β β
β β =

=

Ψ∝ 





• Write derivatives as Cauchy contour integrals

• Integrand is guaranteed to have a unique saddle point
• This is a point  �𝛽𝛽 1∶𝑀𝑀 > 0 such that the Taylor series 

• Almost Gaussian  if contours pass through saddle pt. 
• Everything is exact and error-free up to this point

Saddle Point Approximation
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Why 
Find the 
Saddle 
Point?

[19]

r = 0.13

r = 1.1

r = 2.17

r = 6.3

r = 8.7

r = 0.52

Real parts have same integral Imaginary parts integate to 0 

Gaussian 
Shape
only at 

Saddle Pt

One measurement



• The saddle point approximation

– The approximation is asymptotically accurate when there is a large 
parameter and certain “admissibility” conditions hold.  

– No obvious large parameter here

• The saddle point bound

– The bound always holds, no large parameter, no need to satisfy 
admissibility conditions.  

Approximation and Bound

20
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JPDA Example – 2 Measurements, 4 Targets

[21]

Contours:

Solid – Exact
Dashed – Approx

1 1 1 1

1 2 1 2

Approximation

ˆ ˆ1
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r r

H r
r r
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• Physics defines the “Action”  𝑆𝑆 = ∫𝑡𝑡1
𝑡𝑡2 ℒ 𝑞𝑞 𝑡𝑡 , 𝑞̇𝑞 𝑡𝑡 , 𝑡𝑡 𝑑𝑑𝑑𝑑

– Use calculus of variations to minimize ℒ = Lagrangian
• Euler-Lagrange equations

– “The Statistical Physics of Data Assimilation and Machine Learning,” Henry 
Abarbanel, Cambridge Univ Press, 2022

• Analytic combinatorics
– Paths are the circles of radii 𝛽𝛽
– Define the action as 

– Minimize the action to find the best paths (circles) 

• The combinatorial action is at or near the saddle point 

GFs as “Action”

22

( ) ( ) ( )1
1

( ) log log log M
M

T V
β

β β β β
β β
Ψ

= = Ψ − ≡ −



S

( ) ( ){ }1
ˆ arg min log log Mβ β β β

β
= Ψ − 



• Necessary conditions for the saddle point 
– Set the gradient of   𝑙𝑙𝑙𝑙𝑙𝑙𝑙 β − ∑𝑚𝑚 log𝛽𝛽𝑚𝑚 = 0
– This sets up a natural fixed-point style iteration 

• Example: JPDA
– Computing the fixed point for JPDA is fast.  The fixed-point 

iteration converges monotonically. 
– Approximating particle weights using the saddle point bound

is essentially linear complexity
– The complexity of the saddle point approximation for a 

particle weight is governed by det(Hessian).  It is shown in 
the paper (using Weinstein–Aronszajn identity) that this 
complexity is either 𝑶𝑶(𝑵𝑵𝟑𝟑)  or 𝑶𝑶(𝑴𝑴𝟑𝟑), whichever is smaller. 

”On particle filters with high complexity combinatorial likelihood functions,” S. Ferguson, J. Silver, 
R. Streit, ISIF Fusion Conference, Linkoping, Sweden, July 2022

Fixed Point Iteration for the Saddle Point*

23
*



Simple single target  
PDA particle filter 

example

Exact =  GREEN

Saddle point = RED

24



Particle Weight Correlation
Exact to saddle point

25



Particle Weight Correlation
Exact to saddle bound

26



 Saddle point method avoids all enumeration
 Applicable to likelihood functions with a known probability generating 

function
 The long road from AC to tracking applications 

– Measurement assignments  GFs  Derivatives  Cauchy Integral
 Saddle point approximation  Particle filter weights

 First example is NP-hard filter:  JPDA
• Fast fixed-point calculation for each particle

• Hessian-free saddle bound approximation
--- essentially linear

• Saddle point approximation
• High correlation of exact and approximate particle weights

– How to evaluate approximation when exact is NP-hard?
– More examples in the next lecture

Concluding Remarks

27



Backup

28



Machine-Precision Numerical First 
Derivative for Free

It looks like magic and feels like 
magic,

but it is for real 



The Theory is Simple

[30]

( ) ( ) ( )

0

2 31 1
0 0 0 0 02! 3!
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     Evaluate the function in  

Central finite difference is also 2  order accurate 
In practice, choosing  is tricky 

!
nd

x

Accurate to machine precision

ε

−

•
−

•
complex arithmetic

subtraction errors for small  ε



Not All Second Order Methods Are Created Equal

[31]

Central difference:



• Find the GFL and secular function of the problem
• Adopt a particle filter model
• Need the weights of every particle
• Weights are ratios of derivatives of the secular function
• Use the complex step method
• JPDAS example used the method to evaluate weights of the particles 

in the intensity function 
– Used the method exactly as presented here

• Cross-derivatives require a multi-complex step method:  
– Unnecessary to take symbolic derivatives at all (!)
– Computational complexity – becomes the question 
– How hard is it to evaluate the secular function?

Applications in Tracking

[32]
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• Likelihood functions are often combinatorial
– E.g., they are sums over feasible assignments
– Too many assignments NP-hard 

• NP-hard likelihoods are roadblocks at scale
– Approximations are inevitable

• Mitigate complexity by using saddle point approximation
– Stationary phase, “stationary action”
– It can be exceedingly fast and accurate
– It is 100% free of all enumerations

• Useful in high level information fusion

NP-hard Likelihood Functions

2



AC Taxonomy of Tracking Filters*

[3]

JPDA = PDA with N objects

Bayes-Markov + Detection (BMD)

Bayes-Markov (BM)

JPDAS = JPDA + Superposition

PDA = BMD + Clutter IPDA = PDA + Existence

MB = JIPDA + Superposition

CPHD = JPDAS + Random N

JIPDA = IPDA with N objects

MHT = JIPDA + Hypotheses

MHT without Spatial 
DiversityMBM  =  MB + Hypotheses

LMBM = MBM + Labels
Equivalent
(one scan)

PHD = CPHD with Poisson point process

Tree extends to 
Multisensor and 
Batch Filters

*Analytic Combinatorics for Multiple Object Tracking, by R. Streit, R. Angle, and M. Efe, Springer, 2021



• JPDA with Superposition
– Fast, not NP-hard

• Unresolved targets
– Crossing and parallel tracks

• Multiple target tracking (JiFi)
– Single sensor
– Multiple sensor, bearings-only example

[4]

Examples



JPDAS  and  PHD Intensity

Target state superposition



Secular Function for JPDAS 

[6]
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• Six nearly constant velocity targets in the plane
• Pd = 0.9 at all scans at 1 second intervals
• Linear-Gaussian 4D (pos-vel) models for convenience
• Position measurements only, equal variance in x and y 
• Poisson clutter with mean of 75.  Translates into  0.66 clutter points 

per 3 sigma_measurement radius circle (on average)
• No gating 
• Particle filter implementations with 100,000 particles at each scan
• Filters implemented -- Same data used for both

– Standard PHD
– JPDAS

• States estimated using GMM Matlab function (R2017b)
– No effort was made to extract target tracks 

• Heat map of particles accumulated over all 240 scans 

Example

[7]



JPDAS PHD

[8]

Superposition is stronger influence on intensity than the PMF of object number
Unexpected result since JPDAS is a special case of CPHD

H
ea

t m
ap
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Unresolved Targets/
Merged Measurements

Ignoring the mismatch between the tracker the nature of the 
point measurements has consequences 



• If resolvable, each target generates at most one measurement 
• If unresolvable, together they generate at most one merged measurement
• Changes the measurement generating function but nothing else!

GF for Two Unresolved Targets 

[10]
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• JPDA with two targets
• Target and measurement models much like in  previous 

example
– Nearly constant speed 
– Number of clutter points per 3 sigma_meas circles is 0.24 

• One target is 10 dB  “stronger” than the “weaker” one 

• Two examples 
– Crossing targets
– Parallel targets

Examples

( ) { }1
1 2 1 22

UnRes
1 2 1 2

1 2
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Strong and Weak 
Crossing Targets

[12]

JPDA filter 
without
unresolved 

measurement model

JPDA filter 
with

unresolved 
measurement model

Loses weak target track almost immediately. Anticipated behavior.  

Maintains both tracks.  Inflates variance on weak target near 
the cross, but weak target is not “seduced” by the strong one.  



Strong and Weak Parallel Targets

[13]

JPDA filter 
without
unresolved 

measurement model

JPDA filter 
with

unresolved 
measurement model

Weak target track, once seduced by the strong 
target, is lost.  Anticipated behavior.  

Maintains both tracks.   Inflates variance on weak 
target, but weak target is not “seduced” by the 

strong one.  



• Suppose there are N targets 
• Any combination of them could be unresolved

– Each needs a Pr{unresolved} function 
– Each needs a GFL

• The overall GFL is a sum of 2^N GFLs
– This GFL itself is NP-hard
– The two-target approach is intractable in general

• Alternative 
– Modify Drummond’s measurement peak picking rule (~1965) 

• “at most one measurement per target”
– Allow each sensor report to have “multiplicity”
– Changes the combinatorial problem
– The resulting GFL is tractable 

General Problem of Unresolved Targets

14



JPDA-PHD/Intensity Filter

JiFi (Joint  iFilter) 

“JPDA Intensity Filter for Tracking Multiple Extended Objects in Clutter,” R. 
Streit, ISIF FUSION Conference, Heidelberg, Germany, July 2016

255 / 221 / 0



1| 1 1
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Interpretation in Stone, Streit, Corwin, Bell, Bayesian Multiple Target Tracking,  2014, p. 179



JPDA Intensity Filter* (JiFi)

[17]
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  ISIF Fusion Conf., Heidelberg, July 2018R. Streit, "JPDA intensity filter for tracking multiple extended objects in clutter,"*



Single Sensor JiFi

[18]

• N = specified number of objects — JPDA 
• Heterogeneous objects 

– Each has its own state space
– Each has an unknown number of highlights
– Highlights are volatile – use a PHD intensity filter

• One sensor
– Measurements are of object highlights or clutter points
– Assignment problem — highlight-to-object

• Analytic Combinatorics (AC) uses generating functions (GFs)
– GF for JiFi

JiFi PHD1: 1
( , ) ( ) ( , )Clutter Object Highight

N

N nn
h g g h g

   

Different object state spaces 
Same highlight space 



Multiple Sensor JiFi*

[19]

• L = number of heterogeneous sensors
– Different measurement spaces
– Different (independent) clutter processes 

• Spatial diversity is important assumption
– Different sensors see different object highlights
– Sensor processes are statistically independent 

• GF for Multiple Sensor JiFi

MS/JiFi JiFi

PHD
1

1: 1: 1:1

1

( , ) ( , )

( ) ( , )
N

Clutter Object Highight
n

L

N L N

L

n

h g h g

g h g






  

          





 



Different object state spaces 
Different highlight spaces 

*Angle and Streit, “Multisensor JiFi tracking of extended objects,” ISIF Fusion Conf, July 2019 



• Different measurements from each sensor

• Substitute
– For each sensor:  weighted train of Dirac deltas at the measurements

– For each object:

• Result is the “secular function” 
– Ordinary multivariate analytic function of the weights  and 
– Bayesian posterior intensity function
–  Logarithmic derivative of the secular function 
– “Multisensor JiFi Tracking of Extended Objects,” Angle and Streit, 2019 ISIF Fusion Conference, 

Ottawa, 2019 

Deriving the Multiple Sensor JiFi

20
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Multisensor JiFi Recursion

21

Intensity functions at the previous scan  
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• Simulated target groups in 1-D
– State space is position only on the interval  [– 8, 8]

• Each group has a different maximum number of highlights 
– Number of detected highlights per group is binomially distributed 
– Individual highlights are Gaussian distributed about the group center  
– The groups have different spreads  

• Nearly constant motion
p(xk | xk-1)  =  Gaussian(xk | xk-1, process noise)

• Measurements z are of individual target highlights
– Measurements are i.i.d. conditioned on target position

p(z | xk) = Gaussian (z | xk, measurement noise)

• Clutter is uniform Poisson point process on [– 8, 8] 
• Filters are implemented on a fine 1-D grid  

– No Monte Carlo particle approximations, Gaussian mixtures, etc

Single Sensor JiFi – Two Group Example

[22]



Well 
Separated 

Groups

[23]

Δ = 6 σ

Poisson 
Clutter

Mean of
λ = 5.5

points/sca
nTime:  100 scans at 1 sec intervals

x

Blue Target Red Target

Group Extent, σ 0.5 0.5

Maximum number of targets in group 8 3

Pd of individual targets 0.5 0.8

Target process noise, σ 0.2 0.2

Measurement noise,  σ 0.5 0.5

+8

-8



JiFi Outputs 

[24]

Blue Group Red Group

Δ = 6 σ

Estimated number of Highlights per 
Group

8

3
Std. dev. = 0.98

Std. dev. = 1.67

Initializations are diffuse:   Blue on [0, 4]    and    Red on  [-4, 0]



Double the Spread of the Blue Group

Δ = 4 σ

Keep everything the same but make the Blue group twice as “Wide”



Double Blue Target Spread – Intensity Leakage

[26]

8

3

Estimated number of Highlights per Group

Blue Group Red Group

Δ = 4 σ

Intensity
“Leakage” 



Intensity Leakage – 3-D Plot

[27]



• Compute the weighted centroid of each target’s intensity
• Plot centroids as function of time
• Leakage causes tracking bias

Target-Specific Centroids

[28]



• Five sensors
– Example 1:  Position-only measurements x-y
– Example 2:  Bearings-only measurements

• Four objects – nearly constant velocity in x-y plane
• Simulated object highlights

– Each object has 8 potentially detectable highlights per sensor, except one which has 5  
• Three objects have 5x8=40 highlights total and one has 5x5=25 

– Highlight  Pd = 0.5  for each sensor 
– IID Gaussian distributed about the object’s  “point of interest”
– Highlights are resampled at each scan – do not persist scan to scan

• Particle filter with 10,000 particles  (display random subset of 1000)
– Number of scans = 100 
– Initiate particles for each object 

• Uniformly distributed over “large” object-specific region
• Little overlap in the regions
• Box-shaped region in 1st example;  Star-shaped in the 2nd (details in Fusion 2019 paper)

Multiple Sensor JiFi Examples

29



• Use different colors for each object’s particles
• Region of regard is R = [-8,+8] x [-8,+8]
• FA is IID uniformly distributed over R at each scan

Example 1 – Position-Only
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• Bearing clutter is NOT depicted

Example 2 – Bearings-Only

31
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Estimated Total Highlight Count for Object #1:  Example 2

32
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5 sensors, 8 highlights / sensor, Pd = 0.5
Simulated highlights (total):  40    
Multisensor JiFi estimate:    45.3  

Poisson error
bars  ± 40

JiFi highlight count is biased because simulated highlights do not persist from scan to scan
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• Multisensor JiFi is low computation complexity
• Makes few assumptions about object structure 
• Works with sensors with low observability

– Bearings-only sensors 
• Spatial diversity assumption

– Important – if the goal is to estimate highlights 
– Less important – if the goal is to track the objects

 Spatial leakage 
• Occurs when object tracks are too close for too long
• Analogous to leakage in time-frequency analysis

Multiple Sensor JiFi

33



• Intensity is analogous to power spectrum
– Whitening the intensity function for known targets

• Notched filters and the pair correlation function 
In the PHD intensity filter, conditioned on a target at x1,

– Pair correlation too difficult to compute for other filters, but can be 
approximated by saddle point methods

• Batch processing over K scans of data
– Track before detect strategy
– GFL is a K-deep “exponential tower” 

• not amenable to symbolic methods

– Can be approximated by saddle point methods  

Applications of Saddle Point

34
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• Analytic Combinatorics (AC) and saddle points 
– A story about generating functions 
– Solving NP-hard problems with easy saddle point approximations
– Exact solutions when sensor and other models are imperfect

• Benefits of AC to tracking
– Unified methodology organized by AC

• Classical Bayes-Markov, PDA, JPDA, CPHD, PHD 
• JIPDA, MB, MBM, LMBM, and MHT

– New hybrid filters  -- JiFi and SuperJiFi
– New ways to formulate known problems (e.g., unresolved targets)
– New and classical approximations

• AC is a Bridge to High Level Information Fusion
– Integer linear programming 
– Natural language processing 
– Approximate common subgraph

Concluding Remarks

[35]
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